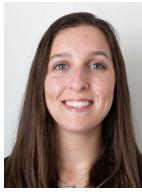
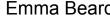


Hybrid UV Filter Critical Design Review

Group 5: Pool Pals November 12, 2021

Hybrid UV Filter Preliminary Design Review Presentation Outline


- Personnel
- Problem Statement
- Previous Proposed Design
- Current Proposed Design
- Material Selection
- Flow / UV Calculations
- Finite Element Analysis
- Conclusions


Kerby Smithson

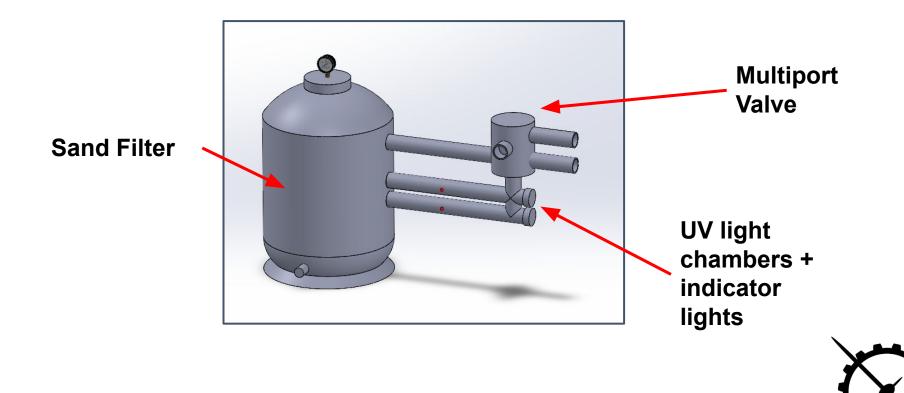
Hybrid UV Filter Preliminary Design Review Pool Pals Personnel

Erin McEneny

Georgeanna Manos

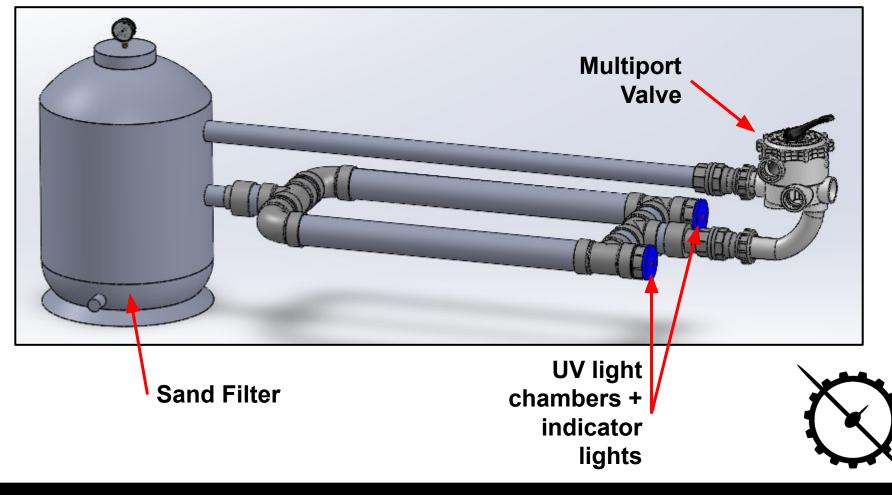
Emma Beard

Brady Crepeau


Hybrid UV Filter Preliminary Design Review Problem Statement

The goal of this project is to design and construct a hybrid pool filter for **sector** that integrates both mechanical filtration and UV light sanitation. The system will demonstrate universal applicability while reducing the chemical additive requirements and structural footprint.

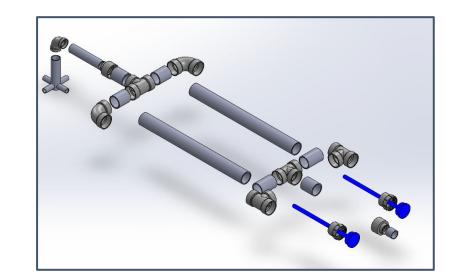
- Stay within an \$800 budget
- Include UV light and mechanical filtration
- Implement visual indicator to show if UV lamp is on.
- Filter liquids adequately
- Accommodate serviceable/removable UV lamp and filter
- Monitor amount of pressure within system
- Sensor to detect UV light emittance

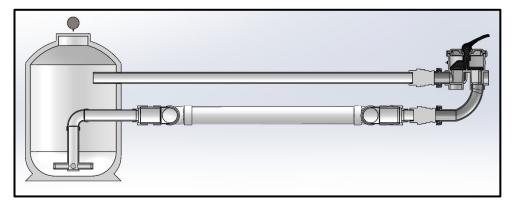


Hybrid UV Filter Preliminary Design Review Previous Proposed Design - PDR

5

Hybrid UV Filter Preliminary Design Review Current Proposed Design



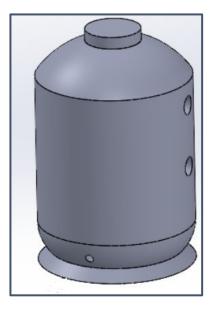

Hybrid UV Filter Preliminary Design Review Material Selection

Pipe, elbows, T's, multiport valve

Use: PVC

- cost: \$1.73/foot (d = 2")
- density: 1.38 g/cm^3
- elasticity: 3275 Mpa
- fatigue strength: 7.5 Mpa
- specific heat: 1005 J/kg*K

- No corrosion
- Industry standard

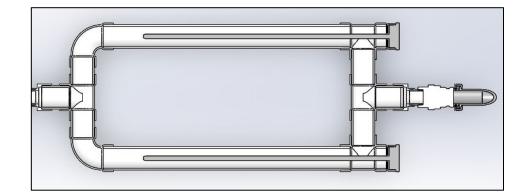


Hybrid UV Filter Preliminary Design Review Material Selection

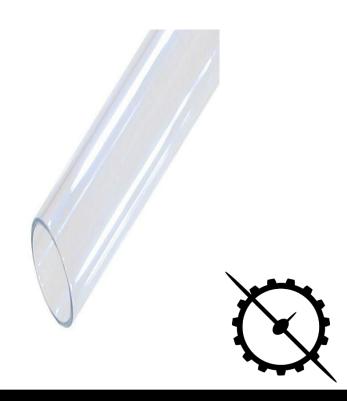
Tank Shell

Use: Fiberglass Reinforced Polypropylene

- cost: \$2.50-3.00/kg
- density: 0.675g/cm^3
- elasticity: 3.8-7.0 GPa
- fatigue strength: Largely dependant on several structural factors
- specific heat: 1920 J/kg*C
 - not corroded by water or chemicals
 - industry standard



NC STATE UNIVERSITY Mechanical and Aerospace Engineering


Hybrid UV Filter Preliminary Design Review Material Selection

Light bulb protective sleeve

Use: Quartz

- cost: Dependant upon size of the sleeve (depends on bulb size we use)
- density: 2.65g/cc
- elasticity: 44.4 GPa
- fatigue strength: 4.8*10^7 Pa
- specific heat: 670 J/kg*C
 - corrosion resistant
 - good medium for UV
 - industry standard

NC STATE UNIVERSITY Mechanical and Aerospace Engineering

Hybrid UV Filter Preliminary Design Review UV Lamp Selection

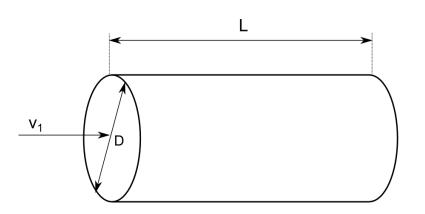
Philips TUV Amalgam XPT System

Low Pressure Amalgam Mercury Lamp Benefits

- UVC output per unit length is 1.5 to 3 times that of a standard LP mercury lamp
- Best performance over wide temperature range

Lamp selected:

Туре	Cap- Base	Dim. no	Technical Lamp Wattage	Lamp Voltage	Lamp Current			Useful life ²	at useful	Irradiance at 1m (µW/cm²)*
			(W)	(V)	(A)	(W)	(W)	(h)	(%)	
130W XPT SE	G10.2Q	1	140	67	2,1	48	46	12000	15	465


Hybrid UV Filter Preliminary Design Review UV Calculations

Arc leng 2a [m		UVC Flux [W]		Distance	Irradiance	Irradiance vs. Distance
0.74	0.2	46	enter data in the grey- shaded cells	m	mW/cm^2	300
				0.03	32.97	
	2a			0.10	9.82	
				0.15	6.44	250
				0.20	4.70	
				0.25	3.63	~ 5
				0.30	2.89	E 200
				0.35	2.36	S U
				0.40	1.96	auc
	1			0.45	1.65	(7 200 (8) 200 (9) 150
				0.50	1.40	<u> </u>
				0.55	1.21	100
				0.60	1.05	100
	Ĺα			0.65	0.92	
	1	x= 61.61°		0.70	0.81	50
				0.75	0.72	
	U 📕	V-meter		0.80	0.64	
	50 SA			0.85	0.58	0
				0.90	0.52	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0
				0.95	0.47	Distance (m)
			-	1.00	0.43	En 1980 XAC 22 SHELLOW

NC STATE UNIVERSITY Mechanical and Aerospace Engineering

Hybrid UV Filter Preliminary Design Review Flow Calculations

System parameters 2" ID piping 3" pipe containing UV light 1" quartz sleeve 2 parallel chambers 50 gpm flow rate

V = Q/A

 $Q = 50 \text{ gpm} = 0.111 \text{ ft}^3/\text{s}$

 $A_{2" \text{ Pipe}} = \pi/4 * (2/12)^2 = 0.0218 \text{ ft}^2$ $V_{2" \text{ pipe}} = 0.111/0.0218 = 5.09 \text{ ft/s}$

 $\begin{array}{l} \mathsf{A}_{\text{UV Chamber}} = \pi/4 \, * \, [(3/12)^2 - (1/12)^2] = 0.0436 \, \text{ft}^2 \\ \mathsf{V}_{\text{UV Chamber}} = 0.111/(2*0.0436) = \textbf{1.28 ft/s} \end{array}$

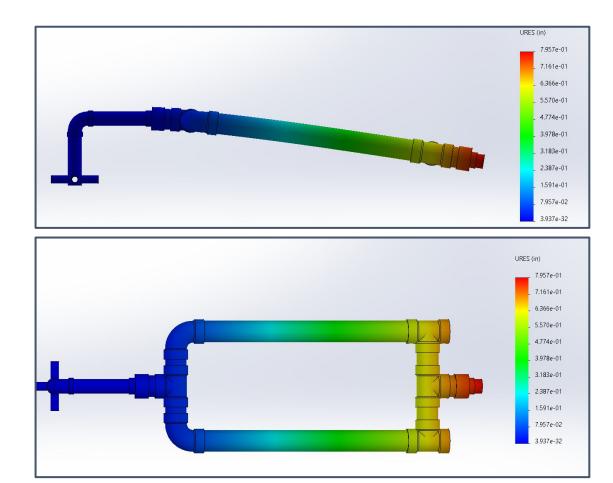
 $L_{Pipe with UV Light} = 3 ft$

Contact time = 3 ft/1.28ft/s = 2.34 seconds

Distance between lamp and inner pipe surface = 28.6 mm = 1.13 in

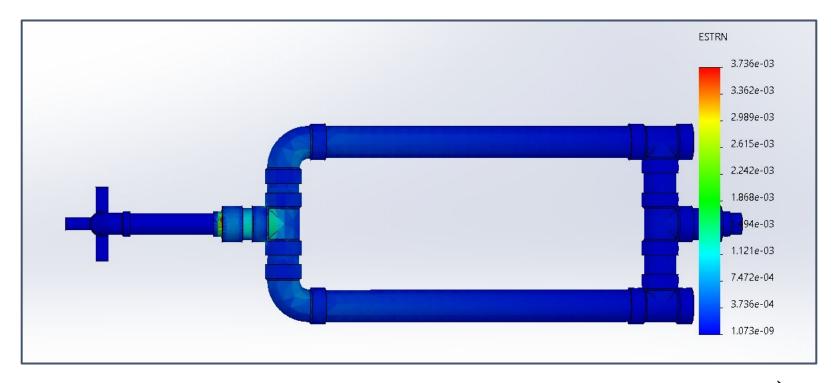
Required contact time	1.86	seconds				
Irradiance from Design Lamp	32.25	mW/cm^2				
Target Dose *	60	mJ/cm^2				
Required contact time = Dose / Irradiance						

* From Pool Water Treatment Advisory Group (PWTAG)


Hybrid UV Filter Preliminary Design Review Finite Element Analysis Structural Analysis

- Structural Analysis using Solidworks Simulation to solve for
 - Displacement
 - Stress (von Mises)
 - Strain
- Forces Used:
 - 8lb force down on outlet pipe for multiport valve weight
 - Gravity
- Component Interactions
 - All pipes are bonded where they intersect
 - Pipes inside tank: 'Fixed' because of the structural support
- Mesh
 - Three different element sizes used
 - 0.49 in pipes inside tank
 - 0.408 in high stress area pipes
 - 1.29 in the rest

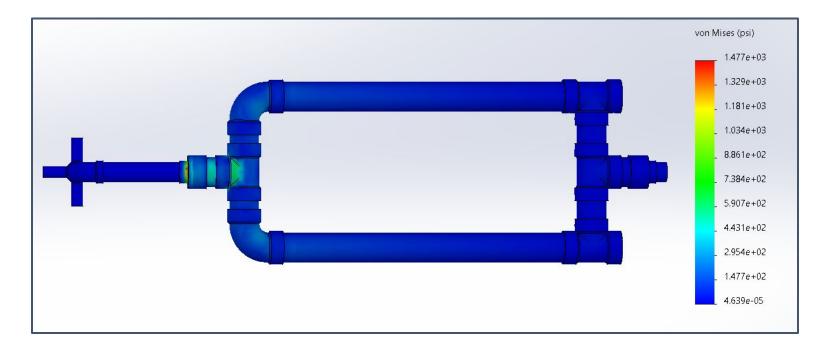
Hybrid UV Filter Preliminary Design Review Finite Element Analysis


UV pipes without support -Displacement FEA

> Max: 0.761 in Min: 0 in

Hybrid UV Filter Preliminary Design Review Finite Element Analysis

UV pipes without support -Strain FEA



Max: 0.0037 Min: 0

Hybrid UV Filter Preliminary Design Review Finite Element Analysis

UV pipes without support -Stress (von Mises) FEA

Max: 1477 psi Min: 0 psi

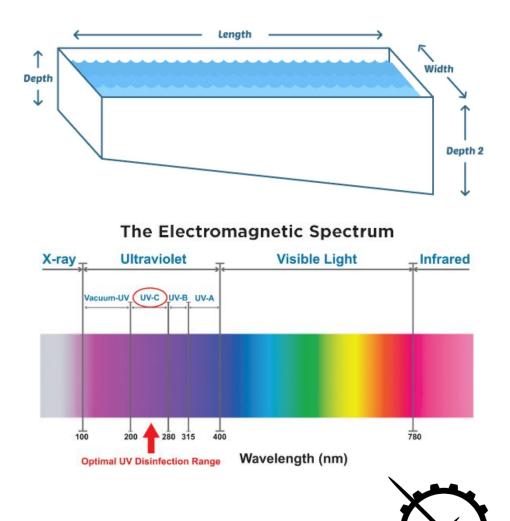
Hybrid UV Filter Preliminary Design Review Conclusions

Current Design:

- New design provides more even fluid distribution, more realistic scale
- Materials
- UV dose should be more than sufficient

Next Steps:

- Configure supports
- Find a LED UV lamp
- Figure out electrical/sensor details


Questions?

Hybrid UV Filter Preliminary Design Review Calculations

Assume (Pool Dimensions) Length = 40 ft Width = 20 ft Avg. Depth = 6 ft t = 12 hours = 720 minutes = 43,200 seconds

Volume= 4,800 ft³ = 36,000 gallons 50 gpm * 720 minutes = 36,000 Water changes per day = 1

